

Opportunities and Challenges of Next Generation Power Electronics for Grid Applications Fred Wang **Z**ijin Forum 2018 Nanjing, China August , 2018 UNIVERSITY OF Rensselaer Northeastern

Outline

- Grid power Electronics Overview and Emerging Needs
- WBG Semiconductors and Opportunities
- New Challenges and Research Needs

Conventional Power Grid Equipment

Power Electronics for AC Transmission – FACTS

Power Electronics for AC Distribution – Custom Power

• Power flow control and interruption

High Voltage DC (HVDC) Transmission

• Point to point transmission

HVDC more economical for long-distance transmission; HVDC can decouple dynamics of AC systems, benefiting system stability and protection

HVDC Technology Evolution: VSC Topologies

- VSC based on switching devices (IGBT/IGCT), with better performance than thyristor based LCC, and significantly converter station footprint and less rightof-way
- MMC latest generation of VSC topology: low loss, and avoid series devices.

Grid Power Electronics – More Recent Development

Grid Power Electronics – More Recent Development

Continuously Variable Series Reactor (CVSR)

Grid Power Electronics – Emerging Needs

• Renewable energy source interface

- Power electronic loads: data center, EV charging station, large motor drive
- Multi-terminal HVDC, microgrid (AC or DC)

Needs, Challenges, and Opportunities

Properties of Wide Bandgap Semiconductors

State-of-the-art SiC Devices

(High Voltage) WBG Device Applications

Wide band-gap (WBG) vs. Silicon

- High breakdown electric field, high voltage rating, low conduction loss
- Fast switching speed, high switching frequency
- Superior thermal characteristics

□ Applications should take advantages of

- Low loss
- Fast switching speed
- High frequency application

□ Benefits of HV SiC can be realized in several ways

- Direct substitution improved efficiency and power density
- Simplified topology further loss reduction and increased power density
- Enable new capability and functionality for system-level
- Enable new applications or replace the non-PE equipment

Wolfspeed 10 kV/240A SiC MOSFET

WBG Potential Applications in Grid

- Improve the performance of the existing PE equipment
 - Efficiency improvement for all;
 - density improvement for some;
 - > performance improvement (e.g. circuit breakers)
- Replace non-PE equipment
 - Solid-state Transformer,
 - solid-state circuit breaker/current limiter
- Enhance functionality/capability
 - Smart inverter
- Enable new applications
 - DC grid
 - high bandwidth conditioner
 - > direct-tied PV inverter

SiC Impact on PV Inverter

□ Benchmark study on MV MW-class Si- and SiC-based PV converter design

- Si solution: 2-level with LF transformer (commercial product)
- SiC solution: 3-level NPC & DC/DC with HF transformer (ARPA-e)

Converter comparison

- Weight is reduced by 82.9% (1,088 kg for SiC vs. 6,362 kg for Si)
- Size is reduced by 73.2% (1.49 m³ for SiC vs. 5.55 m³ for Si)

WBG Device Application

			 High voltage rating for higher power Low loss for higher efficiency/smaller heatsink Fast switching for passive reduction High temperature for cooling reduction 			
	Hitachi 160 kW SiC		_	3x Specific Power	6x Specific Power	
		rter			a a a a	
	Conventional Si inverter		Prototype SiC inverter			
Semiconductor Device	Si-IGBT		SiC-MOSFET			
Topology	2-level	3-level	2-level			
Rating Capacity	100 – 750 kW		160 kW	FSU Gen-I SiC PV converter prototype	FSU Gen-II SiC PV converter conceptual	
Peak efficiency of the inverter	98.2% (measured)	97.7 - 98.8% [4,5]	Over 99.1% (measured)	(~2.5 kw/kg 99% peak efficiency	design (~5 kW/kg) 99% peak efficiency	

[1] S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franquelo, in IEEE Industrial Electronics Magazine, March 2015 **CURENT** [2] S. Wall, R. h. Ruan, C. g. Wang and J. r. Xie, *EPE'16 ECCE Europe)*, Karlsruhe, 2016 [3]A. Hatanaka, H. Kageyama and T. Masuda, *INTELEC*, Osaka, 2015

System Level Benefits of SiC-Based PV Converter

□ Benchmark study on system level benefits of SiC-based PV converter

- Active filter function with SiC-based PV inverter
- System stability is improved with the higher control bandwidth enabled by MV SiC converter
- SiC-based converter has better dynamic performance during LVRT

SiC-based solution

Utility-scale MV Transformer-less PV Inverter

HV SiC-enabled Solid-state Transformer

250 kVA, 20 kHz transformers 220 kVA/ 330 kVA, 60 Hz transformers (35-45 kg)

Prototype 1 MW, 4160-V AC/1000-V DC converter

Research Needs

WBG-based converter Issues due to fast switching, high dv/dt & di/dt, high voltage, high temperature, high power; unique grid application requirements

Converter	Scaling	Grid Condition Tolerance	Grid Support
 Device module & packaging Gate drive & protection Parasitics impact Control Passives & filters (dv/dt, di/dt, EMI etc.) Thermal management Insulation (dv/dt, lightning and switching overvoltage) Reliability and management 	 Device module series and paralleling Converter stacking and paralleling Modular topology 	 Faults Unbalance Grounding Fault detection and protection coordination 	 Frequency and voltage support Inertia emulation Low voltage ride through Stability enhancement Active filtering Black start

SiC Module with Low Inductance

Switching Results of 10 kV SiC MOSFET

 \bigcirc

Short Circuit Protection Test of 10 kV SiC MOSFET

Ch1: drain-source voltage Ch2: drain current Ch3: gate-source voltage Ch4: monitored Vds in desat circuit

Impact of Motor & Cable on Drive Design

- Cooling system cannot be designed based on switching loss from typical DPT
 Switching frequency and deed time, connect be set based on switching time from F
- Switching frequency and dead time cannot be set based on switching time from DPT

Control Challenges of WBG Converters

Converter Fault Current and Protection

□ Case study of the VSC with 2X rated current capability

- A short-circuit fault can be distinguished from the induction motor start with a time delay shorter than 5s
- Utilizing the bus voltage can distinguish the short-circuit fault from induction motor start within 0.1s
- VSC has similar performances for different fault locations, so a larger time delay is needed to avoid relay
 protection misoperation
- RLC load branch can distinguish the short-circuit fault quickly based only on the current
- Short-circuit faults within the induction motor branch can be detected quickly by the current

Power Electronics Grid Emulation Hardware Testbed (HTB)

Front row

Middle row

Back row

Renewable Converter Stability Analysis and Controller Design

Conclusion

- The power grid becomes increasingly based on power electronics, due to the changing sources, loads, and T&D technologies.
- WBG devices and other new technologies provide new opportunities for power electronics in grid applications.
- The emerging needs and technologies also pose many new challenges, requiring new paradigm for power electronics and grid.

Acknowledgements

This work was supported by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other government and industry sponsors are also acknowledged.

Thank You!

